




# Strength from the depths

Fourth sustainable development report for the British marine aggregate industry

December 2010





# Headlines

Total UK marine aggregate production decreased from 21.54mt to 20.10mt

Total tonnage landed in England and Wales reduced by over 23 per cent

Area of seabed licensed for dredging increased by over six per cent

Area of seabed dredged decreased by over ten per cent

Total CO<sub>2</sub> emissions reduced by more than ten per cent

CO<sub>2</sub> emissions per tonne landed increased by over 18 per cent

Regional Environmental Assessments underway in four regions to support programme of licence renewals

Scoping report funded by Marine Aggregate Levy Sustainability Fund identified a series of potential efficiency gains for vessels

BMAPA about to launch Biodiversity Action Plan strategy for the industry

## Key facts and figures

#### **Key areas**

Area of UK seabed
Area of seabed licensed for dredging
Area available to be worked
Area dredged

| 2009                   | % change | 2008                   | 2007                    | 2006                    |
|------------------------|----------|------------------------|-------------------------|-------------------------|
| 867,000km <sup>2</sup> | N/A      | 867,000km <sup>2</sup> | 867,000km <sup>2</sup>  | 867,000km <sup>2</sup>  |
| 1,286km²               | +0.63%   | 1,278km <sup>2</sup>   | 1,343.83km <sup>2</sup> | 1,316.33km <sup>2</sup> |
| 536km²                 | -6%      | 570.31km <sup>2</sup>  | 556.03km <sup>2</sup>   | 576.10km <sup>2</sup>   |
| 123.63km <sup>2</sup>  | -10.3%   | 137.9km <sup>2</sup>   | 134.67km <sup>2</sup>   | 140.6km <sup>2</sup>    |

#### **Market summary**

Total GB aggregates market

Land-based aggregates

Recycled and secondary aggregates

Total marine aggregates production

Marine landings to GB aggregates market

Marine landings to European aggregates market

Beach replenishment contract fill

| 2009    | % change | 2008    | 2007    | 2006    |
|---------|----------|---------|---------|---------|
| 198mt   | -21.1%   | 251mt   | 280mt   | 277mt   |
| 141mt   | -19.4%   | 175mt   | 195mt   | 193mt   |
| 57mt    | -10.9%   | 64mt    | 70mt    | 70mt    |
| 20.10mt | -5.4%    | 21.24mt | 23.20mt | 24.29mt |
| 10.03mt | -23.6%   | 13.12mt | 14.45mt | 13.43mt |
| 5.66mt  | -8.9%    | 6.21mt  | 6.65mt  | 6.71mt  |
| 4.50mt  | +103.6%  | 2.21mt  | 2.10mt  | 4.15mt  |

### Market contribution to GB sand and gravel market

Total GB market

Total England & Wales market

Marine landings to England & Wales

Marine landings to South East England

Marine landings to London & Thames Corridor

Marine landings to Wales

| 2009    | % change | 2008    | 2007    | 2006    |
|---------|----------|---------|---------|---------|
| 55mt    | -23.6%   | 72mt    | 79mt    | 80mt    |
| 49mt    | -23.4%   | 64mt    | 73mt    | 73.6mt  |
| 10.03mt | -23.6%   | 13.12mt | 14.45mt | 13.43mt |
| 7.97mt  | -17.1%   | 9.61mt  | 10.56mt | 9.60mt  |
| 5.85mt  | -18.5%   | 7.18mt  | 7.36mt  | 6.71mt  |
| 0.65mt  | -27.8%   | 0.9mt   | 1.12mt  | 0.99mt  |









### **Foreword**

The economic downturn has had a significant impact on the construction sector and, with it, the marine aggregate industry. BMAPA member production fell by nearly 25 per cent during 2009 and the production capacity of the dredging fleet had to be reduced by 11 per cent with five vessels laid up or put onto part-time working. While supply into some markets along the Thames remained relatively stable, local markets such as those along the South Coast, in the Bristol Channel and in the Irish Sea have seen significant reductions in demand.

Interestingly, overall production from marine aggregate licences only reduced by six per cent compared with the previous year. This was largely as a result of one-off demand for contract fill to support major infrastructure projects such as the port extension at Felixstowe and the new airport development at Ronaldsway in the Isle of

INTERESTINGLY, THE OVERALL PRODUCTION FROM MARINE AGGREGATE LICENCES ONLY REDUCED BY 6% COMPARED TO THE PREVIOUS YEAR.

Man. This capability to supply a diverse range of markets represents one of the sector's key strengths in responding to challenging market conditions.

The draft Marine Policy Statement, issued earlier this year, recognised the diverse range of markets that can be supplied by the marine aggregate industry, which often support the successful delivery of wider national strategic policies relating to transport infrastructure, energy or climate change adaptations. This should ensure that the new marine planning regime takes account of the strategic need and importance of marine aggregate supplies into the future.

The industry continues to work closely with national nature conservation agencies and with regional Marine Conservation Zone projects in the development of a network of Marine Protected Areas. High-resolution data generated from projects funded by the Marine Aggregate Levy Sustainability Fund, alongside data provided by individual operators, continues to play a crucial part in helping ensure that site and feature boundaries are based on the best available scientific evidence, and that important habitats and species are protected.

During the summer, the UK Government published Charting Progress 2 which assesses the state of UK seas and follows up an original assessment published in 2005. The new review was prepared by the UK Marine Monitoring and Assessment Strategy (UKMMAS) community, of which BMAPA is a member

# CLEAN, HEALTHY, SAFE, PRODUCTIVE AND BIOLOGICALLY DIVERSE OCEANS AND SEAS.

through the Productive Seas Evidence Group. It assesses progress towards achieving the vision of clean, healthy, safe, productive and biologically diverse oceans and seas.

Significantly, this assessment includes a detailed description of the range of socio-economic uses of the waters around the UK and the pressures that result. The importance of planning, assessing and managing activities at a regional, ecosystem scale is something the marine aggregate sector has been working towards for some time. Four regional environmental assessments are currently underway in support of a programme of dredging licence renewals required by the end of 2013. With regional-scale management and monitoring plans being developed in parallel by the industry in conjunction with The Crown Estate, this marks a shift towards managing marine aggregate activity at a regional scale which is in line with both national and international policy objectives.

John Miller, Chairman, British Marine Aggregate Producers Association

## Sustainable production

### Core values

**Sustainable products:** we understand our role in sustainable construction and actively promote the most efficient use of our products

**Resource conservation:** we recognise that we must make the most efficient use of all resources

#### **OBJECTIVE 1**

Maintain and improve profitability in order to provide for continuing investment and employment

#### **Key performance indicator: Annual marine production**

Total marine aggregate production from UK licence areas during 2009

|                                        | 2009    | % change | 2008    | 2007    | 2006    |
|----------------------------------------|---------|----------|---------|---------|---------|
| Total (Crown Estate figures)           | 20.10mt | -6.6%    | 21.54mt | 23.20mt | 24.29mt |
| BMAPA reported production <sup>1</sup> | 14.94mt | -24.4%   | 19.75mt | 20.64mt | 20.29mt |

#### Key performance indicator: National/regional contribution to supply

|                             | 2009    | % change | 2008    | 2007    | 2006    |
|-----------------------------|---------|----------|---------|---------|---------|
| Landings to England & Wales | 10.03mt | -23.6%   | 13.12mt | 14.45mt | 13.43mt |
| Landings to London & Thames | 7.97mt  | +18.5%   | 7.18mt  | 7.35mt  | 6.71mt  |
| Landings to Wales           | 0.65mt  | -27.8%   | 0.90mt  | 1.12mt  | 0.99mt  |
| Beach replenishment /fill   | 4.49mt  | +103.6%  | 2.21mt  | 2.10mt  | 4.15mt  |
| Exports                     | 5.66mt  | -8.9%    | 6.21mt  | 6.65mt  | 6.71mt  |

Total marine aggregate production was able to remain relatively stable on account of two one-off major fill contracts which saw 3.665 million tonnes supplied from BMAPA members licence areas by third party vessels (Felixstowe port development and the extension of Ronaldsway airport on the Isle of Man).

The significant drop in BMAPA reported production reflected the downturn in construction activity. This reduction meant that the direct BMAPA contribution to overall marine aggregate production fell to 74% of total production in 2009 (91.67% in 2008).

#### **OBJECTIVE 2**

#### Key performance indicator: Profile of age/capability of dredging fleet

Maintain and increase investment in dredgers and dredging technology in order to improve efficiency and environmental performance

|                               | 2009        | 2008     | 2007        | 2006        |
|-------------------------------|-------------|----------|-------------|-------------|
| Average age of dredging fleet | 20.39 years | 20 years | 19.68 years | 18.68 years |

23 vessels operated by members at the end of 2009 (Sand Serin was sold in 2009).

With the reduced demand for construction aggregate throughout 2009, companies took the decision to reduce the production capacity of the dredger fleet during the year by either laying up vessels or only working vessels part time. Five vessels were affected in this way (three stopped and two reduced to part time working) with the end result being that by the end of 2009 the fleet capacity was reduced by 11,300 tonnes – a reduction of 10.9%.

#### Key performance indicator: investment in vessels/technology over previous five years<sup>1</sup>

2009 cap-ex investment in vessels (not including maintenance):

| 2009   | % change | 2008   | 2007   | 2006   | 2005   |
|--------|----------|--------|--------|--------|--------|
| £4.20m | -57.5%   | £9.90m | £3.67m | £2.49m | £4.97m |

Rolling investment over previous five years

| 2009    | % change | 2008    | 2007    | 2006    | 2005 |
|---------|----------|---------|---------|---------|------|
| £25.24m | -14.3%   | £29.44m | £24.67m | £54.35m | -    |

<sup>&</sup>lt;sup>1</sup> Based on reported data from 22 out of 23 vessels operated by BMAPA members in UK waters.

#### **OBJECTIVE 3**

#### Key performance indicator: Area dredged and hours dredged

Make the most efficient use of available licensed resources

|                                      | 2009                  | % change | 2008                  | 2007                  | 2006                  |
|--------------------------------------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
| Area of seabed licensed for dredging | 1,286km²              | +6.3%    | 1,278km²              | 1,343.83km²           | 1,316.33km²           |
| Area available to be worked          | 536km²                | -6%      | 570.31km <sup>2</sup> | 556.03km <sup>2</sup> | 576.10km <sup>2</sup> |
| Area dredged                         | 123.63km <sup>2</sup> | -10.3%   | 137.90km <sup>2</sup> | 134.67km <sup>2</sup> | 140.6km²              |
| Hours dredged 1                      | 17,778 hrs            | -22.7%   | 22,985 hrs            | 26,340 hrs            | 28,686 hrs1           |

#### **OBJECTIVE 4**

#### Key performance indicator: Tonnes landed per hour dredged<sup>1</sup>

Minimise the screening activity in the production process

|                             | 2009       | % change | 2008       | 2007       | 2006       |
|-----------------------------|------------|----------|------------|------------|------------|
| Marine aggregate production | 14.93mt    | -24.4%   | 19.75mt    | 20.64mt    | 20.29mt    |
| Hours dredged               | 17,778 hrs | -22.7%   | 22,985 hrs | 26,340 hrs | 28,686 hrs |
| Tonnes landed/hour dredged  | 840.14tph  | -2.2%    | 859.12tph  | 783.57tph  | 707.41tph  |

Reduction in hours dredged (-22.7%) would appear to closely correlate with the reduction in overall production (-24.4%) which suggests that the overall level of screening activity has remained constant. As a consequence, the tonnes landed per hour dredged has remained comparatively stable, decreasing by only 2.2%.

#### **OBJECTIVE 5**

Develop and promote best practice for resource management Marine Aggregate Regional Environmental Assessments (MAREA's) are now underway in four regions (South coast, Thames, East coast and Humber) in support of a programme to renew a number of existing production licence areas by the end of 2013. The MAREA's, which have been instigated and led by the industry with support from The Crown Estate, will provide regional scale context to marine aggregate operations, reviewing potential cumulative and in-combination impacts and identifying areas of potential sensitivity. The outputs of the MAREA process will help to inform the site specific environmental impact process that will be required to inform decisions over licence renewals. In parallel with the regional assessments, industry is working with The Crown Estate to develop a blueprint for regional management and monitoring in conjunction with regulators and their advisors.

<sup>&</sup>lt;sup>1</sup> Based on reported data from 22 out of 23 vessels operated by BMAPA members in UK waters.



## Climate change and energy

### Core values

**Carbon management:** we support the Government policy of reducing emissions of greenhouse gases

**Transport:** we are committed to reducing the impact of the transportation of aggregates and quarry products

#### **OBJECTIVE 1**

#### Key performance indicator: Fuel oil consumed per tonne landed<sup>1</sup>

Reduce the impact of atmospheric emissions released through the production and transport Total fuel oil consumed during 2009, broken down by vessel capacity:

|                                 | 2009     | % change | 2008     | 2007      | 2006      |
|---------------------------------|----------|----------|----------|-----------|-----------|
| Total marine gas oil            | 37.87t   | -10.27%  | 42,206t  | 49,262.3t | 49,593.6t |
| Marine aggregate production     | 14.94mt  | -24.4%   | 19.75mt  | 20.64mt   | 20.29mt   |
| Marine gas oil per tonne landed | 2.54kg/t | +18.7%   | 2.14kg/t | 2.39kg/t  | 2.44kg/t  |

#### Key performance indicator: CO<sub>2</sub> emissions<sup>1</sup>

|                                            | 2009     | % change | 2008     | 2007     | 2006     |
|--------------------------------------------|----------|----------|----------|----------|----------|
| Total CO <sub>2</sub> emissions (tonnes)   | 120.81t  | -10.27%  | 134,64t  | 157,15t  | 158,20t  |
| Marine aggregate production                | 14.94mt  | -24.4%   | 19.75mt  | 20.64mt  | 20.29mt  |
| CO <sub>2</sub> emissions per tonne landed | 8.09kg/t | +18.6%   | 6.82kg/t | 7.61kg/t | 7.80kg/t |

(Calculation from MGO tonnes to  ${\rm CO_2}$  tonnes made using conversion factor from DEFRA (2008) Guidelines to DEFRA's Greenhouse Gas Conversion Factors for Company Reporting. Department for Environment, Food and Rural Affairs, London. Accessed from:

http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm)

Reduction in fuel oil and associated  ${\rm CO}_2$  emissions reflects a combination of reduced production (-24.4% 2008) and also a drop off in the production capacity of the dredging fleet throughout the year (-10.8% by 2009 year end). The production capacity of the nearshore fleet (<3000t capacity) was particularly constrained, which meant that larger capacity vessels were generally tasked with replacing their production. The combination of vessels moving between regions to fill production gaps and the fact that larger vessels generally result in a higher fuel cost per unit delivered meant that the fuel/carbon cost per tonne landed increased.

#### **OBJECTIVE 2**

#### Key performance indicator: Tonnes landed per kilometre travelled<sup>1</sup>

Maximise the efficient use of the dredging fleet

|                               | 2009      | % change | 2008      | 2007      | 2006      |
|-------------------------------|-----------|----------|-----------|-----------|-----------|
| Total kilometres steamed      | 1.08m km  | -25.9%   | 1.46m km  | 1.77m km  | 1.47m km  |
| Marine aggregate production   | 14.94mt   | -24.4%   | 19.75mt   | 20.64mt   | 20.29mt   |
| Total landed per km travelled | 13.82t/km | +2%      | 13.54t/km | 11.63t/km | 13.76t/km |

The reduction in steaming distance broadly correlates with the reduction in overall production. The relatively stable ratio between tonnes landed and kilometres steamed reflects the fact that the contribution to overall production by larger vessels increased during 2009.

<sup>&</sup>lt;sup>1</sup> Based on reported data from 22 out of 23 vessels operated by BMAPA members in UK waters.



#### Reducing the impact of marine aggregate operations

With fuel use and associated carbon emissions being associated with every aspect of marine aggregate dredgers operations, maximising the efficiency of the fleet of vessels that undertake marine aggregate extraction is critical. This fact is recognised by the Marine Aggregate Levy Sustainability Fund, who commissioned a scoping report to examine the issues associated with the operational efficiency of marine aggregate dredgers. This project, undertaken by Dutch contractors MARIN, identified a number of distinct areas where potential savings could be made, including real time performance monitors on the bridge of vessels, hull and propeller cleaning, ballasting strategies to ensure the most efficient hull form and the addition of energy saving devices to improve the efficiency of hulls and propellers.

A follow-up project is currently underway to explore some of these options in more detail in conjunction with BMAPA members. This will see real time performance monitoring equipment installed on three marine aggregate dredgers, alongside the consideration of other areas such as hull and propeller cleaning, ballasting strategies, and computer modelling the potential of energy saving devices on existing vessels. The final report should identify some key findings relating to improving the efficiency of marine aggregate operations which can then be taken up by individual operators.

## Natural resources and environmental

### Core values

**Environmental protection:** we recognise the potential of our operations to impact upon the marine environment and are committed to minimising and mitigating such effects

**Biodiversity:** we recognise the importance of marine biodiversity and the contribution we can make to better understanding and protection of marine species and habitats

**Heritage:** we recognise the historic significance of the seabed around the UK and believe that we can make a positive contribution to the understanding and protection of the marine historic environment

**Marine stewardship:** we have a responsibility to manage our operations in order to minimise the significance of our operations to stakeholders and the environment

#### **OBJECTIVE 1**

#### Key performance indicators: Area of seabed licensed for dredging

Minimise the spatial footprint of dredging operations through responsible and effective management

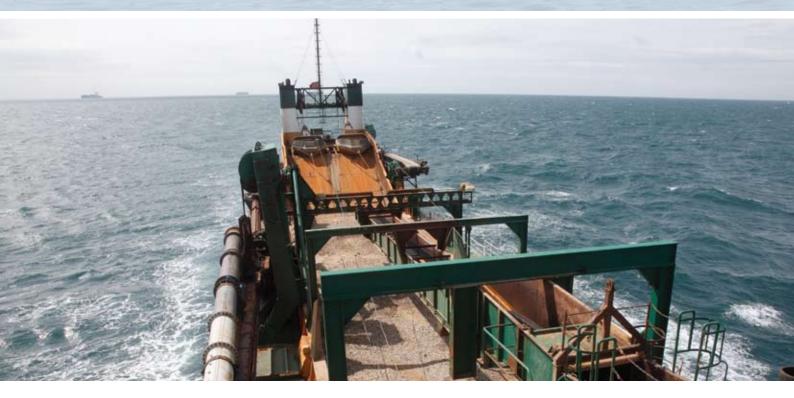
|                                                    | 2009                  | % change | 2008                  | 2007                 | 2006                 |
|----------------------------------------------------|-----------------------|----------|-----------------------|----------------------|----------------------|
| Area of seabed licensed for dredging               | 1,286km²              | +6.3%    | 1,278km²              | 1,344km²             | 1,316km²             |
| Extent of active dredge area                       | 536km <sup>2</sup>    | -6%      | 570.31km <sup>2</sup> | 556km²               | 576km²               |
| Area of seabed actually dredged                    | 123.63km <sup>2</sup> | -10.3%   | 137.9km <sup>2</sup>  | 134.7km <sup>2</sup> | 140.6km <sup>2</sup> |
| Area of seabed where<br>90% of dredging occurs     | 43.45km²              | -9.9%    | 48.22km <sup>2</sup>  | 49.95km²             | 49.19km²             |
| Area of seabed dredged<br>for more than 1.25 hours | 6.83km²               | -26.4%   | 9.28km²               | 10.16km²             | 8.66km²              |

#### **OBJECTIVE 2**

#### **Biodiversity Action Plan Strategy**

Maintain and develop the industry contribution towards the understanding of marine sand and gravel habitats Recognising the important role that marine aggregate operators can play in developing the understanding of broadscale sand and gravel habitats and their associated features, BMAPA is shortly to publish a Biodiversity Action Plan strategy which has been developed with input from Natural England and the Countryside Council for Wales.

The approach being taken is similar to that adopted for the monitoring of heritage issues, in that a single strategy and reporting process developed for the sector as a whole represents a more coherent, consistent and robust approach for operators, regulators and advisors.


The strategy will cover marine aggregate operations at a national scale, and it is intended that the Biodiversity Action Plans themselves and the associated future reporting will be developed at a regional scale – building on the Regional Environmental Assessment process, and linking into the regional management and monitoring blueprints which are currently evolving.

#### **Marine Protected Area Network**

BMAPA and its member companies continue to play a full and constructive role in the development of a network of Marine Protected Areas in UK seas.

As the nearshore proposals for Special Areas of Conservation to protect sand bank and biogenic reef features have developed, BMAPA has worked closely with Natural England to help ensure that site boundaries and the definition of the features within them have been based on the best available evidence. This has included geological understanding, the provision of licence specific resource monitoring data and ongoing research and monitoring data from other sites, including the ongoing research into Sabellaria spinulosa, being funded by marine aggregate operators in conjunction with The Crown Estate.

## protection



BMAPA is actively represented on all four National Marine Conservation Zone projects that are currently underway – Net Gain (in the North Sea), Balanced Seas (in the English Channel), Finding Sanctuary (in the South West) and the Irish Sea Marine Conservation Zone Project, as well as contributing to the development of the various national guidance documents generated by the Statutory Nature Conservation Agencies that direct them. As well as contributing to the regional processes for MCZ site selection, the marine aggregate industry has also been feeding evidence and data into the projects to ensure that site boundaries and the features within them are able to be based on the best available evidence.

#### **National Physical Laboratory**

The marine aggregate sector continues to play an integral part in supporting research commissioned by the Marine Aggregate Levy Sustainability Fund (MALSF) programme. The MALSF, supported by a multidisciplinary steering group comprising Government policy makers, regulators, advisors, The Crown Estate and BMAPA, is responsible for overseeing a research programme worth £4m, with the objective to reduce the environmental impact of marine aggregate extraction. As well as improving the evidence base to improve the way that the sector is planned, assessed, managed and monitored, a key objective of the programme is to address gaps in knowledge and understanding. One such gap concerns the scale of acoustic impact that results from marine aggregate operations, and BMAPA members have supported a project undertaken by the National Physical Laboratory, supported by Southampton Oceanography Centre and Loughborough University to acquire source term data for 7 vessels in three regions around England. This data will allow the significance of the noise resulting from marine aggregate operations to be placed into context with other pressures, and also feed directly into the evidence base to inform the appropriate descriptor (introduction of energy including noise) for Good Environmental Status under the European Marine Strategy Framework Directive.

#### **Beach Nourishment Research**

BMAPA is co-funding a project, being led by the Countryside Council for Wales to examine the potential for undertaking beach nourishment works in Wales in response to the challenges of climate change. The project, which is also being funded by the Aggregate Levy Sustainability Fund for Wales and The Crown Estate, is also exploring the opportunities that could result from beach nourishment works in terms of not only protecting local communities and infrastructure, but also protecting coastal sites of nature conservation importance and the potential for such works to enhance the amenity value of Welsh beaches.

### Natural resources and environmental protection - continued

#### **OBJECTIVE 3**

Maintain and develop industry contribution towards the understanding of Britain's marine historic environment The archaeological reporting protocol which was developed by BMAPA and English Heritage to enable archaeological finds encountered during marine aggregate operations (either on board dredgers or at the wharves) continues to be delivered through an implementation service provided by Wessex Archaeology. The service allows finds recovered by industry staff to be identified and assessed for their significance by heritage experts, and where necessary for appropriate mitigation to be introduced on production licence areas to protect previously unknown sites of importance, for example aircraft crash sites.

Since 2005, over 200 reports covering some 750 individual items have been submitted.

From September 2009, The Crown Estate agreed to became a co-funder of the implementation service, working in partnership alongside BMAPA.

The details of the Protocol, annual reports and descriptions of finds can be found at http://www.wessexarch.co.uk/projects/marine/bmapa/index.html

#### **OBJECTIVE 4**

Maintain effective controls to minimise the potential for pollution to the marine environment

#### Key performance indicator: number of recorded pollution incidents<sup>1</sup>

| Number of pollution incidents during 2009 | 2008 | 2007 | 2006 |
|-------------------------------------------|------|------|------|
| 7 (All minor hydraulic leaks)             | 6    | 0    | 6    |

<sup>&</sup>lt;sup>1</sup> Based on reported data from 22 out of 23 vessels operated by BMAPA members in UK waters.





## Creating sustainable communities

### Core values

**Health & safety:** our highest priority is the health & safety of employees, contractors and visitors

**Employment:** we recognise that our activities are an important source of employment and economic activity

**Competence:** we recognise the need to maintain and develop a competent workforce

**Good neighbours:** we engage with marine stakeholders, strive to be seen as good operators by other marine users and recognise the importance of partnerships in achieving both of these

**Stakeholder accountability:** we recognise the importance of operating as good corporate citizens

#### **OBJECTIVE 1**

#### Key performance indicators: Working days lost through work-related injury<sup>1</sup>

Improve the occupational health and safety of the marine sector's employees

|                      | 2009                          | 2008 | 2007  | 2006 |
|----------------------|-------------------------------|------|-------|------|
| Reportable accidents | 6                             | 3    | 5     | 7    |
| Days lost            | 219 (sea staff)<br>0 (office) | 391  | 251.5 | 164  |

#### **OBJECTIVE 2**

#### Key performance indicators: Employment direct / indirect (office/ship crew)<sup>1</sup>

Improving employee development through vocational training

|              | 2009 | % change | 2008 | 2007 | 2006 |
|--------------|------|----------|------|------|------|
| Office staff | 57   | -11.76%  | 64.6 | 80   | 121  |
| Sea staff    | 427  | -0.46%   | 429  | 467  | 441  |

#### Key performance indicators: Employment direct / indirect (office/ship crew)<sup>1</sup>

|                            | 2009 | % change | 2008 | 2007 | 2006 |
|----------------------------|------|----------|------|------|------|
| Training days per employee | 8.02 | +262.9%  | 2.21 | 4.02 | 2.53 |

#### **OBJECTIVE 3**

#### **Active dredge area charts**

Increasing the transparency of activities, and maintaining and developing further liaison with other marine stakeholders

BMAPA continues to produce twice-yearly active dredge area charts in partnership with The Crown Estate. These define the extent of the area win which dredging is permitted to take place, enforced by analysis of Electronic Monitoring Data. The charts are widely circulated by local Marine Management Organisation offices to provide fisheries interests with the most up to date information on the extent of marine aggregate operations.

Industry representatives continue to attend bi-annual fisheries liaison committee meetings that take place on the south and east coast of England.

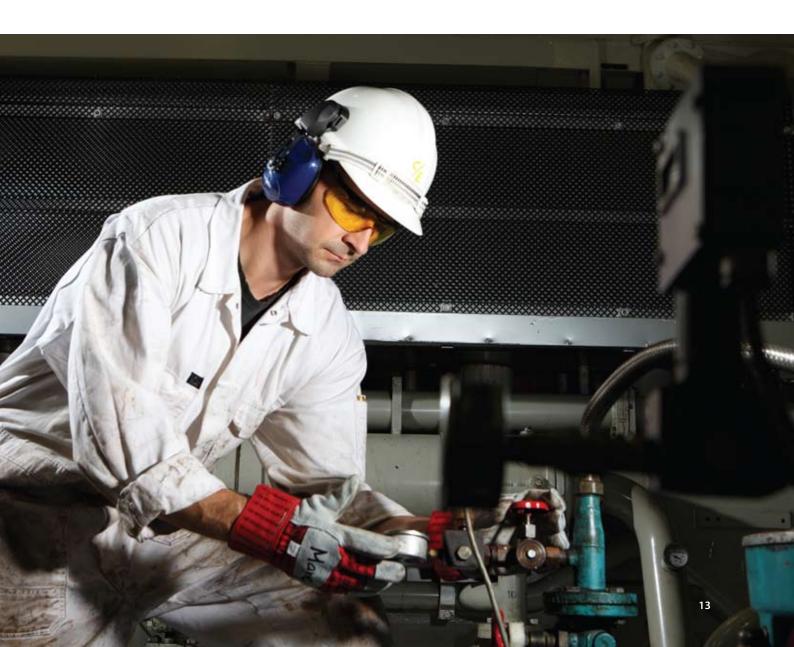
#### Area involved initiative

BMAPA and The Crown Estate continue to report summary information on the extent of licensed and dredged area under their area involved initiative which commenced in 1999. The report for activity in 2009 represented the 12th annual report, and the spatial data generated by this ongoing initiative is expected to become increasingly important as the marine conservation network and marine planning processes evolve in English and Welsh waters

<sup>&</sup>lt;sup>1</sup> Based on reported data from 6 BMAPA member companies, operating 22 out of 23 vessels working in UK waters.



#### **Archaeology reporting initiative**


The annual report for the BMAPA/English Heritage archaeology reporting protocol is widely circulated to regulators, heritage advisors and curators, as well as to all marine aggregate wharves and vessels. During the reporting period October 2009 to September 2010, a total of 45 reports were made by industry staff, encompassing 81 individual finds.

The details of the Protocol, annual reports and descriptions of finds can be found at http://www.wessexarch.co.uk/projects/marine/bmapa/index.html

#### Marine aggregate glossary document

There are a wide range of terminologies and associated acronyms that are quite specific to various aspects of marine aggregate operations. In an effort to help third parties understand more clearly how the industry operates, BMAPA and The Crown Estate have produced a comprehensive reference document of marine aggregate terms which provides illustrated explanations of over 200 terms and acronyms.

Details can be found at http://www.bmapa.org/downloads/BMAPA\_Glossary.pdf



## Economies of scale

By delivering large volumes of a low cost, bulk material close to the point of demand, economies of scale represent one of the marine aggregate sectors greatest advantages.

The 22 vessels operated by BMAPA members for which data has been reported range in size from 880 tonnes to 8,800 tonnes capacity, with associated variations in vessel dimensions and engine power. However, all the vessels are highly specialised and fulfil particular roles in supplying essential marine sand and gravel supplies to the market place. This variation is effectively masked in the summing of overall key performance indicator information.

To assist analysis of key performance indicator data, the dredging fleet can be separated into two categories.

- i. Vessels with cargo capacities below 3,000 tonnes, which typically supply local wharves from nearshore licence areas, such as along the south coast, in the Bristol Channel and in the Irish Sea. Vessels will typically supply a cargo every 12-24 hours. (7 vessels/10,642t total hopper capacity 10.2% of total fleet capacity)
- ii. Vessels with cargo capacities greater than 3,000 tonnes which typically operate in more offshore licence areas supplying more distant wharves, such as those along the River Thames and on the Continent.
   Vessels will typically supply a cargo every 24-48 hours. (15 vessels/93,743t total hopper capacity 89.8% of total fleet capacity)

The two classes of vessel generally supply very different markets, therefore by separating their operational data it is possible to better understand and present the differences between the two. Over time, this should also allow the identification of trends that may occur over time in each class that would perhaps otherwise be masked in the summed dataset.

### Sustainable production

#### **OBJECTIVE 1**

#### **Key performance indicators: Annual marine production**

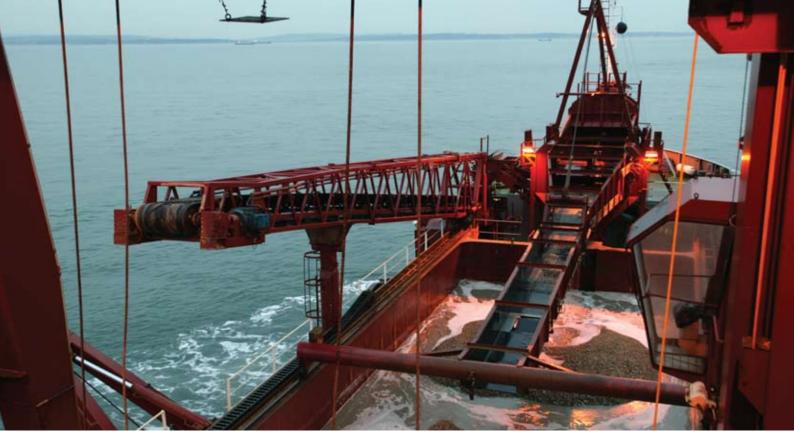
Maintain and improve profitability in order to provide for continuing investment and employment

|                             | 2009                    | % change | 2008                    |
|-----------------------------|-------------------------|----------|-------------------------|
| Production <3,000t capacity | 2,409,769t (16% total)  | -38.9%   | 3,949,263t (20% total)  |
| Production >3,000t capacity | 12,526,171t (84% total) | -20.7%   | 15,797,665t (80% total) |

#### **OBJECTIVE 2**

#### Key performance indicators: Area dredged and hours dredged

Make the most efficient use of available licensed resources


|                       | 2009                     | % change | 2008                       |
|-----------------------|--------------------------|----------|----------------------------|
| Hours dredged <3,000t | 3,734 hours (21% total)  | -45.3%   | 6,831 hours (29.7% total)  |
| Hours dredged >3,000t | 14,044 hours (79% total) | -13%     | 16,154 hours (70.3% total) |

#### **OBJECTIVE 3**

#### Key performance indicators: Tonnes landed per hour dredged

Minimise the screening activity in the production process

|                                   | 2009         | % change | 2008         |
|-----------------------------------|--------------|----------|--------------|
| Tonnes landed/hour dredged (<3kt) | 645.36t/hour | +11.63%  | 578.14t/hour |
| Tonnes landed/hour dredged (>3kt) | 891.92t/hour | -8.78%   | 977.94t/hour |



## Climate change and energy

#### **OBJECTIVE 3**

#### Key performance indicators: Fuel oil consumed per tonne landed

Reduce the impact of atmospheric emissions released through the production and transport processes

|                           | 2009                   | % change | 2008                  |
|---------------------------|------------------------|----------|-----------------------|
| Fuel oil <3,000t capacity | 3,593t (9.49% total)   | -37.4%   | 5,742t (13.6% total)  |
| Fuel oil >3,000t capacity | 34,280t (90.51% total) | -5.99%   | 36,464t (86.4% total) |
| <3kt kg fuel/tonne        | 1.491kg/t              | -2.54%   | 1.454kg/t             |
| >3kt kg fuel/tonne        | 2.737kg/t              | +18.59%  | 2.308kg/t             |

#### Key performance indicators: CO<sub>2</sub> emissions

|                                | 2009                       | % change | 2008                       |
|--------------------------------|----------------------------|----------|----------------------------|
| <3kt carbon emissions          | 11,461.67t (13.6% total)   | -37.4%   | 18,316.980t (13.6% total)  |
| >3kt carbon emissions          | 109,353.20t (86.4% total)  | -5.99%   | 116,320.160t (86.4% total) |
| <3kt CO <sub>2</sub> /t landed | 4.756kg CO <sub>2</sub> /t | +2.54%   | 4.638kg CO <sub>2</sub> /t |
| >3kt CO <sub>2</sub> /t landed | 8.730kg CO <sub>2</sub> /t | +18.56%  | 7.363kg CO <sub>2</sub> /t |

(Calculation from MGO tonnes to  ${\rm CO_2}$  tonnes made using conversion factor from DEFRA (2008) Guidelines to DEFRA's Greenhouse Gas Conversion Factors for Company Reporting. Department for Environment, Food and Rural Affairs, London. Accessed from: http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm)

#### **OBJECTIVE 2**

#### Key performance indicators: Tonnes landed per kilometre travelled

Maximise the efficient use of the dredging fleet

|                             | 2009                    | % change | 2008                       |
|-----------------------------|-------------------------|----------|----------------------------|
| Km steamed <3,000t capacity | 159,074km (14.7% total) | -50%     | 322,990km (22.15% total)   |
| Km steamed >3,000t capacity | 921,905km (85.3% total) | -18.8%   | 1,135,517km (77.85% total) |
| <3kt t landed/km steamed    | 15.148t/km steamed      | +23.9%   | 12.227t/km steamed         |
| >3kt t landed/km steamed    | 13.587t/km steamed      | -2.3%    | 13.912t/km steamed         |


## Impact of the downturn

While the overall performance of the sector has been significantly affected by the economic downturn, the KPI data for different classes of vessels shows very clearly that it is the smaller capacity vessels which have been impacted the most. Compared to 2008, overall production reduced by nearly 40%, with corresponding reductions in hours dredged, steaming distances, fuel use and carbon emissions. This reflects the significant reduction for construction aggregates in the local markets generally supplied by these vessels.

With the market for smaller vessels constrained, several vessels were stopped or worked part-time, with larger vessels then used to fill the production gaps. This saw the larger vessels contribution to the sectors overall production increase during 2009, although in absolute terms their total production reduced by 20% compared to the previous year.

While the hours dredged and distance steamed by larger vessels broadly corresponded to the reduction in production (a reduction of around 20%), an apparent anomaly can be seen in the fuel consumption (a reduction of only 6%). This resulted in both the fuel and carbon cost per tonne for large vessels increasing. This can be explained by the fact that irrespective of whether a vessel is steaming, loading or at anchor, its engines are running and therefore using fuel. The increase in fuel and carbon cost per tonne landed reflects the fact that the larger vessels were generally less productive per unit of time during 2009 thanks to the lack of demand. This underlying baseline operational cost also helps to explain why five vessels were either laid up or switched to part-time working during the year.





# Appendices GB market summary 1980 - 2009

|      | GDP Market prices<br>chained volume<br>measures | Construction<br>output (GB)<br>£m 2005 prices | Primary aggregates<br>sales (GB)<br>million tonnes | Crushed rock<br>million tonnes | Sand and gravel (total)<br>million tonnes |
|------|-------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------|-------------------------------------------|
| 1980 | 631,074                                         | 50,728                                        | 199                                                | 103                            | 96                                        |
| 1981 | 622,722                                         | 45,829                                        | 182                                                | 92                             | 89                                        |
| 1982 | 635,756                                         | 47,487                                        | 194                                                | 103                            | 91                                        |
| 1983 | 658,798                                         | 51,576                                        | 213                                                | 112                            | 101                                       |
| 1984 | 676,394                                         | 53,627                                        | 211                                                | 111                            | 100                                       |
| 1985 | 700,740                                         | 54,219                                        | 217                                                | 115                            | 102                                       |
| 1986 | 728,856                                         | 56,178                                        | 228                                                | 123                            | 106                                       |
| 1987 | 762,107                                         | 62,580                                        | 254                                                | 142                            | 111                                       |
| 1988 | 800,457                                         | 68,616                                        | 291                                                | 162                            | 130                                       |
| 1989 | 818,719                                         | 71,857                                        | 300                                                | 169                            | 131                                       |
| 1990 | 825,099                                         | 72,085                                        | 278                                                | 162                            | 116                                       |
| 1991 | 813,610                                         | 66,841                                        | 246                                                | 148                            | 98                                        |
| 1992 | 814,803                                         | 64,033                                        | 233                                                | 144                            | 89                                        |
| 1993 | 832,910                                         | 62,823                                        | 239                                                | 150                            | 89                                        |
| 1994 | 868,560                                         | 62,589                                        | 259                                                | 162                            | 98                                        |
| 1995 | 894,988                                         | 63,381                                        | 241                                                | 151                            | 90                                        |
| 1996 | 920,757                                         | 65,776                                        | 215                                                | 133                            | 82                                        |
| 1997 | 951,208                                         | 67,369                                        | 220                                                | 134                            | 86                                        |
| 1998 | 985,506                                         | 68,411                                        | 218                                                | 132                            | 86                                        |
| 1999 | 1,019735                                        | 69,294                                        | 221                                                | 133                            | 88                                        |
| 2000 | 1,059,658                                       | 69,676                                        | 219                                                | 130                            | 89                                        |
| 2001 | 1,085,745                                       | 71,087                                        | 222                                                | 134                            | 88                                        |
| 2002 | 1,108,508                                       | 74,090                                        | 210                                                | 127                            | 83                                        |
| 2003 | 1,139,746                                       | 77,852                                        | 203                                                | 123                            | 80                                        |
| 2004 | 1,171,178                                       | 80,254                                        | 214                                                | 128                            | 86                                        |
| 2005 | 1,195,276                                       | 79,540                                        | 204                                                | 122                            | 82                                        |
| 2006 | 1,229,196                                       | 80,426                                        | 207                                                | 127                            | 80                                        |
| 2007 | 1,266,347                                       | 82,424                                        | 209                                                | 130                            | 79                                        |
| 2008 | 1,275,299                                       | 83,248                                        | 187                                                | 115                            | 72                                        |
| 2009 | 1,295,159                                       | 91,863                                        | 142                                                | 86                             | 55                                        |

Source: MPA 2009 SD report.

Marine sand and gravel figures exclude beach nourishment/contract fill and exports.

| 12.5       20       219       24       224         11.5       18       200       22       19.9         11.9       19       213       26       70.7         12.8       21       234       27.2       21.5         12.6       21       232       25.5       20.8         13.8       27       239       26.9       21.6         15.3       23       25.1       28.4       21.5         16.2       25       279       29.9       24.3         19.6       29       320       31.8       28.8         20.7       32       332       33.7       29.6         17.2       33       311       36.7       26.78         12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       26.8                                                                        | Sand & gravel (marine)<br>million tonnes | Recycling (est)<br>million tonnes | Total Aggregates (GB)<br>million tonnes | Asphalt (GB)<br>million tonnes | Ready-mixed concrete (GB)<br>million cu m |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|-----------------------------------------|--------------------------------|-------------------------------------------|
| 11.9       19       213       26       207         12.8       21       234       27.2       215         12.6       21       232       255       208         13.8       22       239       269       216         15.3       23       251       284       215         16.2       25       279       299       243         19.6       29       320       31.8       288         20.7       32       332       33.7       296         17.2       33       311       367       2678         12.4       34       280       364       2253         10.6       35       268       366       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.4       54       27.5       26       23.55         14.4       57       27.6                                                                                    | 12.5                                     | 20                                | 219                                     | 24                             | 22.4                                      |
| 12.8       21       234       27.2       21.5         12.6       21       232       25.5       20.8         13.8       22       239       269       21.6         15.3       23       251       28.4       21.5         16.2       25       279       29.9       24.3         19.6       29       320       31.8       28.8         20.7       32       332       33.7       29.6         17.2       33       311       36.7       26.78         12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57 <t< th=""><th>11.5</th><th>18</th><th>200</th><th>22</th><th>19.9</th></t<> | 11.5                                     | 18                                | 200                                     | 22                             | 19.9                                      |
| 12.6       21       232       25.5       20.8         13.8       22       239       26.9       21.6         15.3       23       251       28.4       21.5         16.2       25       279       29.9       24.3         19.6       29       320       31.8       28.8         20.7       32       33.2       33.7       29.6         17.2       33       311       36.7       26.78         12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.3         13.0       51       269       27.7       22.93         13.4       54       27.5       26       23.55         14.4       57       27.6       25.7       23         13.6       60       <                                                                    | 11.9                                     | 19                                | 213                                     | 26                             | 20.7                                      |
| 13.8       22       239       26.9       21.6         15.3       23       251       284       21.5         16.2       25       279       29.9       24.3         19.6       29       320       31.8       28.8         20.7       32       33.2       33.7       29.6         17.2       33       311       36.7       26.78         12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       27.5       26       23.55         14.4       57       27.6       25.7       23         13.6       60       282       26.5       23         13       62       2                                                                        | 12.8                                     | 21                                | 234                                     | 27.2                           | 21.5                                      |
| 15.3       23       251       284       21.5         16.2       25       279       29.9       24.3         19.6       29       320       31.8       28.8         20.7       32       332       33.7       29.6         17.2       33       311       36.7       26.78         12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268                                                                        | 12.6                                     | 21                                | 232                                     | 25.5                           | 20.8                                      |
| 162       25       279       299       243         196       29       320       31.8       28.8         20.7       32       332       33.7       29.6         17.2       33       311       36.7       26.78         12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.54         12       64.5       268 </th <th>13.8</th> <th>22</th> <th>239</th> <th>26.9</th> <th>21.6</th>  | 13.8                                     | 22                                | 239                                     | 26.9                           | 21.6                                      |
| 19.6       29       320       31.8       28.8         20.7       32       332       33.7       29.6         17.2       33       311       36.7       26.78         12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                       | 15.3                                     | 23                                | 251                                     | 28.4                           | 21.5                                      |
| 20.7       32       332       33.7       29.6         17.2       33       311       36.7       26.78         12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                             | 16.2                                     | 25                                | 279                                     | 29.9                           | 24.3                                      |
| 17.2       33       311       36.7       26.78         12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                   | 19.6                                     | 29                                | 320                                     | 31.8                           | 28.8                                      |
| 12.4       34       280       36.4       22.53         10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.54         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                         | 20.7                                     | 32                                | 332                                     | 33.7                           | 29.6                                      |
| 10.6       35       268       36.6       20.78         10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                 | 17.2                                     | 33                                | 311                                     | 36.7                           | 26.78                                     |
| 10.1       37       276       36.3       20.77         11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                        | 12.4                                     | 34                                | 280                                     | 36.4                           | 22.53                                     |
| 11.3       39       298       37.7       22.93         11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.6                                     | 35                                | 268                                     | 36.6                           | 20.78                                     |
| 11.6       42       283       34.9       21.68         11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.1                                     | 37                                | 276                                     | 36.3                           | 20.77                                     |
| 11.5       45       260       29.3       20.89         12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.3                                     | 39                                | 298                                     | 37.7                           | 22.93                                     |
| 12.0       48       268       27.5       22.33         13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6                                     | 42                                | 283                                     | 34.9                           | 21.68                                     |
| 13.0       51       269       27.7       22.93         13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.5                                     | 45                                | 260                                     | 29.3                           | 20.89                                     |
| 13.4       54       275       26       23.55         14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.0                                     | 48                                | 268                                     | 27.5                           | 22.33                                     |
| 14.4       57       276       25.7       23         13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.0                                     | 51                                | 269                                     | 27.7                           | 22.93                                     |
| 13.6       60       282       26.5       23         13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.4                                     | 54                                | 275                                     | 26                             | 23.55                                     |
| 13       62       272       27.8       22.54         12       64.5       268       27.8       22.3         13.0       67       281       26.9       22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.4                                     | 57                                | 276                                     | 25.7                           | 23                                        |
| 12     64.5     268     27.8     22.3       13.0     67     281     26.9     22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.6                                     | 60                                | 282                                     | 26.5                           | 23                                        |
| <b>13.0</b> 67 281 26.9 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                       | 62                                | 272                                     | 27.8                           | 22.54                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                       | 64.5                              | 268                                     | 27.8                           | 22.3                                      |
| <b>13.0</b> 68.3 272 27.9 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.0                                     | 67                                | 281                                     | 26.9                           | 22.9                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.0                                     | 68.3                              | 272                                     | 27.9                           | 22.4                                      |
| <b>14.0</b> 70 277 25.7 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.0                                     | 70                                | 277                                     | 25.7                           | 22.9                                      |
| 14.0     71.0     280     25.7     23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.0                                     | 71.0                              | 280                                     | 25.7                           | 23.5                                      |
| <b>12.6</b> 64 251 25 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 64                                | 251                                     | 25                             | 20.1                                      |
| 10.0 56.5 198 20.5 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0                                     | 56.5                              | 198                                     | 20.5                           | 14.4                                      |

# Appendices Marine aggregate summary statistics 1998 - 2009

|      | Area of seabed<br>licensed for<br>dredging (km²)* | Area available<br>to be worked<br>(km²)* | Area dredged<br>(km²)* | Quantity dredged<br>(million tonnes) ** |
|------|---------------------------------------------------|------------------------------------------|------------------------|-----------------------------------------|
| 1998 | 1,458                                             |                                          | 222.6                  |                                         |
| 1999 | 1,455                                             |                                          | 220.3                  | 20.47                                   |
| 2000 | 1,464                                             |                                          | 155.4                  | 23.68                                   |
| 2001 | 1,408                                             | 972                                      | 150.6                  | 20.68                                   |
| 2002 | 1,359                                             | 896                                      | 149.8                  | 22.76                                   |
| 2003 | 1,264                                             | 890                                      | 143.8                  | 21.93                                   |
| 2004 | 1,257                                             | 780                                      | 134.5                  | 22.23                                   |
| 2005 | 1,179                                             | 596                                      | 137.6                  | 21.45                                   |
| 2006 | 1,316                                             | 576                                      | 140.6                  | 21.09                                   |
| 2007 | 1,344                                             | 556                                      | 134.7                  | 24.18                                   |
| 2008 | 1,278                                             | 570                                      | 137.9                  | 21.24                                   |
| 2009 | 1,286                                             | 536                                      | 123.6                  | 20.10                                   |

<sup>\*</sup> Taken from 'Marine Aggregate Dredging – The Area Involved' annual reports published by BMAPA and The Crown Estate between 1999 and 2009.

<sup>\*\*</sup> Extracted from annual 'Marine Aggregates, Crown Estate Licences, Summary Statistics reports published by The Crown Estate between 1998 and 2009. Quantity dredged comprises GB landings of construction aggregates, export landings of construction aggregates and beach replenishment / contract fill.



# BMAPA members and dredging fleet

| BMAPA member             | Vessel              | Built | Capacity<br>(cubic metres) | Capacity<br>(tonnes) | Age in 2009<br>(years) |
|--------------------------|---------------------|-------|----------------------------|----------------------|------------------------|
| Britannia Aggregates     | Britannia Beaver    | 1991  | 2,775                      | 4,800                | 18                     |
| CEMEX UK Marine          | Sand Falcon         | 1998  | 4,832                      | 8,359                | 11                     |
|                          | Sand Fulmar         | 1998  | 4,000                      | 6,290                | 11                     |
|                          | Sand Harrier        | 1990  | 2,700                      | 4,671                | 19                     |
|                          | Sand Heron          | 1990  | 2,700                      | 4,671                | 19                     |
|                          | Sand Weaver         | 1974  | 2,400                      | 4,152                | 35                     |
|                          | Welsh Piper         | 1987  | 790                        | 1,367                | 22                     |
| DEME Building Materials  | Charlemagne         | 2002  | 5000                       | 8,650                | 7                      |
| Hanson Aggregates Marine | Arco Adur           | 1988  | 2,890                      | 5,000                | 21                     |
|                          | Arco Arun           | 1987  | 2,890                      | 5,000                | 22                     |
|                          | Arco Avon           | 1986  | 2,890                      | 5,000                | 23                     |
|                          | Arco Axe            | 1989  | 2,890                      | 5,000                | 20                     |
|                          | Arco Beck           | 1989  | 2,600                      | 4,500                | 20                     |
|                          | Arco Dart           | 1990  | 700                        | 1,250                | 19                     |
|                          | Arco Dee            | 1990  | 700                        | 1,250                | 19                     |
|                          | Arco Dijk           | 1992  | 5,100                      | 8,800                | 17                     |
|                          | Arco Humber         | 1972  | 4,600                      | 8,000                | 37                     |
| Northwood (Fareham)      | Donald Redford      | 1981  | 440                        | 775                  | 28                     |
|                          | Norstone            | 1971  | 800                        | 1,400                | 38                     |
| Tarmac Marine Dredging   | City of Cardiff     | 1997  | 1,418                      | 2,300                | 12                     |
|                          | City of Chichester  | 1997  | 1,418                      | 2,300                | 12                     |
|                          | City of London      | 1990  | 2,652                      | 4,750                | 19                     |
|                          | City of Westminster | 1990  | 3,000                      | 5,200                | 19                     |
|                          |                     |       | Total fleet capacity       | Total fleet capacity | Average<br>vessel age  |
|                          |                     |       | 63,005                     | 103,485              | 20.39                  |

Other BMAPA members who do not operate vessels: Brett Group, Kendall Brothers (Portsmouth), Lafarge Aggregates, Sea Aggregates, Volker Dredging.

Tarmac Marine Dredging was previously known as United Marine Dredging.

Figures as of 31.12.09.





The British Marine Aggregate Producers Association is part of the Mineral Products Association, the trade association for the aggregates, asphalt, cement, concrete, lime, mortar and silica sand industries

#### British Marine Aggregate Producers Association Gillingham House

Gillingham House 38-44 Gillingham Street London SW1V 1HU

Tel +44 (0)20 7963 8000 bmapa@mineralproducts.org www.bmapa.org

© BMAPA 2010